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1 Introduction

Enumerative geometry is one of the oldest subjects in mathematics: Already
the ancient Greeks asked questions like ”given three circles in the plane how
many different circles are there tangent to these circles?“ In the second century
B.C., Apollonius could answer this question: The number of circles tangent to
three circles in the plane is 8 ([DZ22]).
Problems of this style remained of interest; in the 19th century, Schubert pub-
lished results like “the number of spheres tangent to 4 general spheres in space
is 16“ or ”the number of conics tangent to 8 quadrics in space is 4, 407, 296“
([DZ22]). However, as Schubert’s proofs using his theory of characteristics relied
on some heuristic arguments, Hilbert asked as the 15th of his famous problems
posed at the ICM 1900 in Paris, how these could be done rigorously.
One instance of these enumerative problems is to find the so-called Zeuthen or
characteristic numbers: The numbers Nd,g(l) of complex plane curves of degree
d and genus g tangent to l lines and passing through k = 3d − 1 + g − l gen-
eral points in the two-dimensional complex projective space P2

C (classically, the

question is asked for smooth curves, i.e. curves of genus g =
(
d−1
2

)
[Vak99]).

A special case of this problem is to compute the number Nd := Nd,0(0) of ratio-
nal curves of degree d passing through 3d−1 points in general position. Zeuthen
managed to compute those numbers up to d = 4 in 1873 ([KLSW23]). In 1994,
Kontsevich discovered a recursive formula for Nd ([KM94]).
A more general version, asking for the number Ng,d := Ng,d(0) of curves with
arbitrary genus g through 3d+ g− 1 general points, has been answered in 1996
by Caporaso and Harris via a recursive formula, too ([CH98]).
Nine years later, Mikhalkin showed that these numbers can be computed using
tropical geometry ([Mik05]) by proving a correspondence theorem: ”The num-
bers Ng,d of complex curves [of genus g] through given points P1, ..., Pn are the
same as the numbers of tropical curves of the same genus and degree through
the images of P1, ..., Pn under the logarithm (resp. valuation) map“ counted
with some multiplicities ([Gat06]). The formula of Caporaso and Harris can
also be proven in tropical geometry — with a much simpler proof. This was
done by Gathmann and Markwig ([Gat06],[GM07]).
A natural question to ask next, is what happens if one changes the ground field
from the complex numbers C to the real numbers R. As the real numbers are
not algebraically closed, the problem gets more complicated. For example, there
can be 8, 10 or 12 rational real cubics passing through 8 real points in the real
projective plane P2

R as Degtyarev and Kharlamov showed ([DK00]). Counted
with certain signs, however, Welschinger ([Wel05a],[Wel05b]) showed that these
numbers still remain invariant for points in general position. In Mikhalkin’s
already mentioned paper [Mik05], he showed that these signed counts too can
be done via tropical geometry. Noticeably, both of his counts sum over the same
set of tropical curves.
More results using signed counts were shown for the question of how many lines
there are on a smooth cubic surface in projective space P3

k. While for k = C
there are always 27 complex lines (Salmon and Cayley in the 19th century
[Cay09]), it turns out that for R there can be either 3, 7, 15 or 27 real lines
([LKW21]). However, there again turned out to be a way to define a signed
count that is invariant as Finashin and Kharlamov, and Okonek and Teleman
showed ([FK13],[OT14]).
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This observation inspired the thought that there might be a more general con-
cept behind changing the base field and getting a different way of counting. Fol-
lowing this thought led to a new way of counting: So-called arithmetic counts
were defined. Levine developed a certain invariant arithmetic count of rational
curves ([Lev20]), which was later generalized by Kass, Levine, Solomon, and
Wickelgren ([KLSW23]). Around the same time, Kass and Wickelgren found
an invariant arithmetic count of the lines on a smooth cubic surface ([LKW21]).
Shortly after this, Larson and Vogt defined an arithmetic count of bitangents
([LV21]). Moreover, McKean has proven an arithmetic version of Bézout’s the-
orem in [McK21].
For a field k, arithmetic, also called (quadratically) enriched, counts take val-
ues in the Grothendieck-Witt ring GW(k) of quadratic forms over k. This is a
direct generalization of the real signed count and the classical complex case in
the sense that for k = C one can recover the classical results over C by taking
the rank, for k = R by taking the signature.
Recall that Mikhalkin managed in [Mik05] to do both cases, complex and real,
simultaneously via tropical geometry, proving a correspondence theorem. This
hints at a good compatibility of tropical geometry with arithmetic counts. In
[MPS23], Markwig, Payne and Shaw showed that the enriched count of bitan-
gents works in the tropical world, too. A direct generalization of Mikhalkin’s cor-
respondence theorem was proven later, as Jaramillo Puentes and Pauli showed
that the correspondence is also true for the more general case of arithmetic
counting, gaining an arithmetic correspondence theorem ([PP23]). Again, sum-
ming over the same set of tropical curves for all fields. In another paper,
Jaramillo Puentes and Pauli have proven an enriched version of Bézout’s theo-
rem for tropical curves, too ([PP22]).
In this paper, Jaramillo Puentes and Pauli define an enriched intersection mul-
tiplicity for enriched tropical hypersurfaces. As the multiplicities in tropical
correspondence theorems can often be expressed as such intersection-products,
the thought is natural, that there might be a valuable connection to enumera-
tive geometry.
However, this enriched multiplicity is only defined for intersections that cut
down to a single point. One motivation for this work was to take first steps
towards a possible generalization of this enriched intersection multiplicity to
not-0-dimensional intersections.
The idea for enriched tropical hypersurfaces stems from Viro’s patchworking
([Vir01]), a tool used to construct real curves with certain topological proper-
ties. Viro’s patchworking is one of the first instances where tropical geometry
occurred. From today’s perspective, Viro’s patchworking uses quadratical en-
richments over the real numbers R, also called distributions of signs.
For a given non-singular tropical hypersurface, [Ren17] defines something called
a real phase structure. While a distribution of signs assigns signs on the ver-
tices of the dual of a tropical hypersurface, a real phase is defined directly on
the facets of the hypersurface. In [Ren17] it is shown that the two concepts are
very closely related.
As already mentioned, the distributions of signs were generalized to arbitrary
fields k via quadratical enrichments. A natural question to ask is whether that
is possible for the real phase, too: Is it possible to define a k-phase with similar
properties? In this text, we answer this question positively. Additionally, we
will generalize the k-phase (and hence the real phase) such that singular hyper-
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surfaces are not a problem anymore. By a similar procedure as in [Ren17], we
will show, that the k-phase structure has the same connection to enrichments
as the real phase structure has to distributions of signs.
After establishing the k-phase on hypersurfaces, we will consider intersections
of hypersurfaces with k-phases and are able to cover all transversal intersect-
ing cases. On our way to do this, we will look into systems of equations in
(k

∗
/(k∗)2)n and develop a theory about their solution sets. Moreover, it will be

possible to give a definition of k-phase directly on transversal intersections of
arbitrary many tropical hypersurfaces.
Finally, we will see that one of the versions of the enriched versions of Bézout’s
theorem from [PP22] holds for hypersurfaces with k-phases.
Of course, after generalizing the real phase to general fields, it is an interest-
ing and natural follow-up question which of the results obtained using the real
phase can be generalized to other fields, too.

1.1 Acknowledgements

I thank Sabrina Pauli for answers to questions about the structure of k
∗
/(k∗)2 and

about her papers and Johannes Rau for answers about the real phase structure.

1.2 Changes

In this text, the points 3.5, 4.44 and the subsubsection 4.6.1 are additions that
I made after handing in this text. The rest remained unchanged.
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2 Tropical Geometry

We assume that the reader is familiar with the basic concepts of tropical ge-
ometry: tropicalization, tropical numbers, varieties and polynomials, the dual
subdivisions of tropical hypersurfaces and transversal intersection. We will give
a short remark on stable intersection, too. We denote the tropical numbers
as T and use the convention T = R ∪ {−∞} with the addition ⊕ defined via
a⊕b = max{a, b} and the multiplication ⊗ defined via a⊗b = a+b for a, b ∈ T.
As usual, for x = (x1, ..., xn) and I = (i1, ..., in) we define xI := xi11 · · ·xinn .

3 Real Phase

In this section, we lay out the real case: We introduce the concepts of distribu-
tions of signs and real phase and relate them to each other. We follow [Ren17].
From now on, let C always be a tropical hypersurface in Rn, n ≥ 2 defined by
a tropical polynomial f =

⊕
I∈Nn

0
cIx

I ∈ T[x1, ..., xn] such that each summand

with cI ̸= −∞ corresponds to one component of Rn\C. Let ∆ denote the dual
subdivision with edges ∆E and vertices ∆V .
To define a real phase on a tropical hypersurface, we need it to be non-singular.

Definition 3.1 (Non-singular tropical hypersurface). A tropical hypersurface
C is called non-singular if it is locally a tropical linear space or equivalently, if
its dual subdivision is primitive, meaning that each n-dimensional polytope of
the subdivision has normalized lattice volume equal to 1.

Now we can give the definition of a real phase. For that, let from now on
F(C) denote the set of facets of a tropical hypersurface C. For every facet
F ∈ F(C), there exist exactly two monomials cIx

I and cJx
J of f that are the

maximal ones on F .

Definition 3.2 (corresponding vector). We will call I − J the corresponding
vector to F .

The order of I and J will not be important. A vector v is in the direction
of F if, and only if, ⟨v, I − J⟩ = 0 for the standard scalar product ⟨·, ·⟩.

Definition 3.3 (Real phase). A real phase on a non-singular tropical hyper-
surface C in Rn is the data for every facet F ∈ F(C) of 2n−1 n-tuples of signs
φF,i =

(
φ1
F,i, ..., φ

n
F,i

)
, 1 ≤ i ≤ 2n−1 satisfying the following properties:

1. If 1 ≤ i ≤ 2n−1 and v = (v1, ..., vn) is an integer vector in the direction of F ,
then there exists 1 ≤ j ≤ 2n−1 such that (−1)vkφk

F,i = φk
F,j , for 1 ≤ k ≤ n.

2. Let H be a codimension 1 face of C. Then for any facet F adjacent to H
and any 1 ≤ i ≤ 2n−1, there exists a unique face G ̸= F adjacent to H and
1 ≤ j ≤ 2n−1 such that φG,j = φF,i.

We define φF := {φF,i =
(
φ1
F,i, ..., φ

n
F,i

)
| 1 ≤ i ≤ 2n−1}. The reason why we

need C to be non-singular for this definition will become clear in a later section.

Remark 3.4. If we interpret + and − as 0 and 1 in Z2, the first property means
that the set associated to a facet is an (n − 1)-dimensional affine hypersurface
in Zn

2 .
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Remark 3.5. In more recent work, an alternative easier definition of real phase
is used (e.g. arXiv:2106.08728v2 definition 2). This definition is equivalent to
definition 3.3.
However, if the tropical hypersurface is singular, this definition does not coincide
with the R-phase defined in this text.
However, I conjecture that the R-phase is closely related to or equivalent to the
collection of sets defined in arXiv:2310.08313v1 in definition 4.4. This turns out
to be the same as a real phase on a non-singular tropical hypersurface.

To get a better understanding of the definition of real phase, we need to
introduce distributions of signs.

Definition 3.6 (Distribution of signs). Let C be a tropical hypersurface in Rn,
n ≥ 2, with dual subdivision ∆. A distribution of signs is a map

δ : {vertices of ∆} → {+,−}; v 7→ δv.

By duality, we could equivalently define δ as a map

{components of Rn\C} → {+,−}.

Moreover, it would be equivalent, too, to define δ as a map

δ : {I ∈ Nn
0 | cI ̸= −∞} → {+,−}; I 7→ δI

if
⊕

I∈Nn
0
cIx

I is a defining tropical polynomial.

The intuition behind the definitions of real phase and distribution of signs is
the following: Every tropical polynomial F =

⊕
I cIx

I , cI ∈ Q can be realized
as the tropicalization of the polynomial

∑
I t

−cIxI over the field of Puiseux se-
ries R{{t}}. Of course, this polynomial is not the only one which tropicalizes
to f , since (among lots of other information) the sign in front of t−cI could be
changed. By assigning either + or − to each monomial, we fix this sign.
For the polynomial to have a zero, we need the signs of two terms to be oppo-
site. The information stored in the real phase structure are exactly the signs of
x1, ..., xn needed to have a zero.

Example 3.7. Consider the tropical line in R2 defined by x ⊕ y ⊕ 0 with the
distribution of signs defined by δ(1,0) := −, δ(0,1) := −, and δ(0,0) := +. One
element of the preimage of x ⊕ y ⊕ 0 that fits to this distribution of signs is
(−x) + (−y) + 1. We can now apply the intuition mentioned above to this
polynomial to get a corresponding real phase to the distribution of signs. See
Figure 1 for a picture of the curve together with its distribution of signs and
the real phase.

� φF1
: For which signs of x and y can 1+ (−y) be zero? For y positive and

x positive or negative.

� φF2
: For which signs of x and y can (−x) + (−y) be zero? For x positive

and y negative or for x negative and y positive.

� φF3
: For which signs of x and y can 1+ (−x) be zero? For x positive and

y positive or negative.
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−

−+

φF1
= {(+,+), (−,+)}

φF3 = {(+,−), (+,+)}

φF2
= {(+,−), (−,+)}

Figure 1: The tropical line with distribution of signs and real phase referenced
in Example 3.7.

Example 3.8. In three dimensions, the real phase becomes quite unhandy, it
is noted directly in Figure 2. Again, the curve is equipped with a distribution
of signs inducing the real phase.

For different distributions of signs we do not always get the same real phase,
of course. The next definition states when a real phase is achieved by a certain
distribution of signs.

Definition 3.9 (Compatible distribution). A distribution of signs δ at the
vertices of ∆ is called compatible with φ, if for any vertex v of ∆, the following
compatibility condition is satisfied:
For any vertex w of ∆ adjacent to v, one has δv ̸= δw if, and only if, (+, ...,+) ∈
φF , where F denotes the facet of C dual to the edge connecting v and w.

Using this condition, in [Ren17] the next lemma is proven, which states that
there is a two-to-one-correspondence between distributions of signs and real
phases.

Lemma 3.10. For any real phase φ on C, there exist exactly two distributions
of signs at the vertices of ∆ compatible with φ.
Reciprocally, given any distribution of signs δ at the vertices of ∆, there exists
a unique real phase φ on C such that φ is is compatible with δ.

How to get a real phase structure from a distribution of signs was already
explained above. To get a fitting distribution of signs from a real phase φ on C
works as follows. Choose an arbitrary vertex v of ∆ and put an arbitrary sign
ϵ at v. Given a vertex of ∆ equipped with a sign, define a sign at all adjacent
vertices by the compatibility condition from Definition 3.9: δv ̸= δw if, and only
if, there exists 1 ≤ i ≤ 2n−1 such that φF,i = (+, · · · ,+), where F denotes the
facet of C dual to the edge connecting v and w.

4 k-phase

4.1 Enriched tropical hypersurfaces

To generalize the concept of a distribution of signs to an arbitrary field k, we
replace the set of signs {+,−} by the set k∗

/(k∗)2. For the real case, we get that
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F1

F2

F3

F4

F5

F6

+

−

−

+

� φF1 = {(+,+,+), (−,+,+), (+,−,−), (−,−,−)}

� φF2
= {(+,+,+), (+,−,+), (−,+,−), (−,−,−)}

� φF3
= {(+,−,+), (+,−,−), (−,+,+), (−,+,−)}

� φF4 = {(+,+,+), (+,+,−), (+,−,+), (+,−,−)}

� φF5
= {(+,+,+), (+,+,−), (−,+,+), (−,+,−)}

� φF6
= {(+,+,−), (−,+,−), (+,−,−), (−,−,−)}

Figure 2: Example 3.8 of a tropical hypersurface with distribution of signs and
real phase.

R∗
/(R∗)2 = {[−1], [1]}. In particular, there are only two classes: One containing

the positive real numbers and one containing the negative real numbers. Hence,
for k = R we are in the case of signs again.
Analogously to a distribution of signs, we define an enrichment of a tropical
hypersurface ([PP22]).

Definition 4.1 (Enriched tropical hypersurface). An enrichment of a tropical
hypersurface C is a map

α : {vertices of ∆} → k∗
/(k∗)2; v 7→ αv.

Together with such a map, we call C an enriched tropical hypersurface.

Again, we can equivalently think of α as a map going from the set of com-
ponents of Rn\C into k∗

/(k∗)2. Also, if the defining tropical polynomial is⊕
I∈Nn

0
cIx

I , we can equivalently think of it as a map from {I ∈ Nn
0 | cI ̸= −∞}
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to k∗
/(k∗)2. We will write αI for the image of I and call

⊕
I∈Nn

0
αIcIx

I an en-

riched tropical polynomial. Throughout this text, we will switch between these
equivalent definitions frequently.

4.2 Definition of k-phase

As we want to follow the same path of thought as for the real phase, we have
to think about the following question: If cIx

I and cJx
J are the two monomials

for which the maximum is attained — what do we need [x1], ..., [xn] ∈ k∗
/(k∗)2

to be, that there exist some aI ∈ αI , aJ ∈ αJ , yi ∈ [xi], i ∈ {1, ..., n} such that
aIy

I + aJy
J = 0?

Equivalently, we can ask for the solutions to the equation

[aI ][x
I ] = [−aJ ][xJ ] (1)

in (k
∗
/(k∗)2)n. Hence, before we come to the definition of k-phase, we need to

note some properties of k∗
/(k∗)2.

Obviously, (k
∗
/(k∗)2, ·) with multiplication defined via [ab] = [a] · [b] is a commu-

tative group. Moreover, each element α ̸= [1] is of order 2, i.e. α2 = [1] for all
α ∈ k∗

/(k∗)2. Hence, k∗
/(k∗)2 has exponent 2. This means in particular, that

� [a−1] = [a] = [a]−1,

� [a]m = [a]m mod 2 and

� [a]i−j = [a]j−i for m, i, j ∈ Z.

We will write −α instead of [−1]α (notice that [1] = [−1] is possible). Applying
these facts to (1), we get the equivalent equation

[xI−J mod 2] = −αIαJ , (2)

where the modulo is applied componentwise. For reading convenience, we will
use a minus sign even when calculating modulo 2.

Remark 4.2. For k∗
/(k∗)2 finite, we know that it is isomorphic to Zd1

×· · ·×Zdm

for some d1, ..., dm ∈ N, since k∗
/(k∗)2 is abelian. From the fact that k∗

/(k∗)2 has
exponent 2, we can conclude that d1 = ... = dm = 2. It follows that, if |k∗

/(k∗)2|
is finite, it is a power of 2 and if |k∗

/(k∗)2| = 2m then k∗
/(k∗)2 ∼= Zm

2 .
In particular, up to isomorphism of groups, it is sufficient to know a field with
|k∗
/(k∗)2| = 2m for all m ∈ N. We will construct such fields in the next Lemma.

Note, however, that there still can be important differences between two such
quotients, like whether [1] is unequal to [−1] or not.

Lemma 4.3. Let l be a field and k = l((t)) = {
∑∞

i=m cit
i | ci ∈ l, m ∈ Z, cm ̸=

0} ∪ {0} be the field of formal Laurent series over l. Then

|k∗
/(k∗)2| = |(l∗/(l∗)2)

.
∪ (t · l∗/(l∗)2)| = 2 · |l∗/(l∗)2|.

It follows that for l∗/(l∗)2 finite |k∗
/(k∗)2| = 2|l∗/(l∗)2|.

In particular, it is | R((t1,...,tm))∗

(R((t1,...,tm))∗)2 | = 2m+1 and for |k∗
/(k∗)2| = 2m+1 we know

from the previous remark that

k∗
/(k∗)2 ∼=

R((t1, ..., tm))∗

(R((t1, ..., tm))∗)2

as groups.
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Proof. Recall that in the subring of formal power series l[[t]] = {
∑∞

i=0 cit
i |

ci ∈ l} of l((t)) an element is a square if, and only if, c0 is a square and that
the units are exactly the power series with c0 ̸= 0. It follows immediately,
that in l[[t]]∗/(l[[t]]∗)2 we have [

∑∞
i=0 cit

i] = [c0
∑∞

i=0
ci
c0
ti] = [c0]. We conclude

that for [
∑∞

i=m cit
i] ∈ k∗

/(k∗)2 there are two cases: Either m ∈ 2Z and hence
[
∑∞

i=m cit
i] = [tm(

∑∞
i=0 ci+mt

i)] = [
∑∞

i=0 ci+mt
i] = [cm] or m ̸∈ 2Z and hence

[
∑∞

i=m cit
i] = [tm(

∑∞
i=0 ci+mt

i)] = [t(
∑∞

i=0 ci+mt
i)] = [tcm].

Example 4.4. We have

|R((t))∗/(R((t))∗)2| = |{±1,±t}| = 4

and
|R((s,t))∗/(R((s,t))∗)2| = |{±1,±s,±t,±st}| = 8.

Remark 4.5. From algebra we know that |k∗
/(k∗)2| = 2 for k a finite field with

characteristic unequal to 2. Additionally, it is known from number theory that
−1 is a square in a field with characteristic p = 1 mod 4 and not a square in
Zp with p a prime number and p = 3 mod 4.
If p = 3 mod 4, then in a finite field k of order p2n for some n ∈ N, −1 is a
square: For GF (p2) = Zp[x]/⟨x2+1⟩ it is x2 = −1, i.e. −1 is a square. Since 2 is
a divisor of 2n, GF (p2) is a subfield of GF (p2n), hence −1 is a square in this
field, too.

Example 4.6. In Z5 we get 22 = −1, hence −1 is a square. It follows that
Z∗
5/(Z∗

5)
2 = {{1, 4}, {2, 3}}, in particular [1] = [−1].

For k = Z7 we get that −1 is not a square as 7 = 3 mod 4. Hence, Z∗
7/(Z∗

7)
2 =

{[1], [−1]}.

Example 4.7. One can calculate that for k = Z3[x]/⟨x3 + 2x + 1⟩ ∼= GF (33)
there is no square root of −1. Hence, k∗

/(k∗)2 = {[1], [−1]}.

Example 4.8. Obviously, for k algebraically closed, we get k∗
/(k∗)2 = {[1]}.

Example 4.9. For k = Q it is

Q∗
/(Q∗)2 = {[±p1 · · · ps] | pi prime, pairwise different, s ∈ N0} ,

in particular |Q∗
/(Q∗)2| =∞.

Example 4.10. In example 2.7. in [PP22] it is shown that

k∗
/(k∗)2 = k{{t}}∗

/(k{{t}}∗)2.

Example 4.11. Consider the hypersurface defined by the over k = R((t))
enriched tropical polynomial [t]x⊕ [1]y ⊕ [−1]0 in R2.
For the edge where x and y obtain the maximum, we get from equation (2) that

[xy] = [(x, y)(1,0)−(0,1) mod 2] = −α(1,0)α(0,1) = [−t],

respectively
[y] = [−t][x].

Hence, we get as the set assigned to this edge

{(1,−t), (−1, t), (t,−1), (−t, 1)}.
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However, since these sets get quite large, we will only note [t] = α(1,0)α(0,1) at
the edge (in blue).
Analogously, we get [−t] and [−1] at the other edges, see Figure 3. In particular,
we have [t] · [−1] · [−t] = [1].

α(0,1) = [1]

α(1,0) = [t]α(0,0) = [−1]

[−1]

[−t]

[t]

α(0,1) = [1]

α(1,0) = [t]α(0,0) = [−1]

[−1]

[−t]

[t]

Figure 3: The example for a tropical line in R2 enriched over k = R((t)) together
with its dual from Example 4.11.

Example 4.12. See Figure 4 for two two-dimensional examples of curves with
an enrichment α over k = R((t)). At each edge (v, w) we noted the product
αvαw in blue. Notice that going over any cycle in the dual, the product of the
values associated to the edges in the cycle is [1].

Example 4.13. In Figure 5, we see a more complicated example of the dual of
a tropical curve this time with an enrichment over k = R((s, t)). Notice again,
that going over any cycle, the product of the values associated to the edges in
the cycle is [1].

This finally brings us to the definition of a k-phase.

Definition 4.14 (k-phase). A k-phase on a non-singular tropical hypersurface
C in Rn is a map φ : F(C) → k∗

/(k∗)2 such that for each codimension 1 face of
C with adjacent facets F1, F2, F3 holds φ(F1)φ(F2)φ(F3) = [1].

For dimensions 2 and 3 this means the following.

Definition 4.15 (k-phase — dimension 2). A k-phase on a non-singular tropical
hypersurface C in R2 is a map φ : {edges of C} → k∗

/(k∗)2 such that for each
vertex with adjacent edges e1, e2, e3 holds φ(e1)φ(e2)φ(e3) = [1].

Definition 4.16 (k-phase — dimension 3). A k-phase on a non-singular trop-
ical hypersurface C in R3 is a map φ : {two-dimensional cells of C} → k∗

/(k∗)2

such that for each edge with adjacent two-dimensional cells p1, p2, p3 holds
φ(p1)φ(p2)φ(p3) = [1].

Remark 4.17. Via duality, we can equivalently interpret a k-phase φ as a map
from the set of edges of ∆ to k∗

/(k∗)2. We will write vw (or wv, the order does
not matter) for the edge connecting the vertices v, w ∈ ∆V .
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Figure 4: Two tropical hypersurfaces in R2 enriched over k = R((t)) and their
duals, from Example 4.12.

Our first goal is to set enriched hypersurfaces and hypersurfaces with k-phase
in connection. To do this, we will proceed analogously to the real phase.

Definition 4.18 (Compatible enrichment). An enrichment α at the vertices of
∆ is called compatible with φ if for any vertex v of ∆, the following compatibility
condition is satisfied:
For any vertex w of ∆ adjacent to v, one has αv = φ(F )αw, where F ∈ F(C)
denotes the facet of C dual to the edge connecting v and w.

The next theorem is the analog to Lemma 3.10. For k = R, we get the
statement from Lemma 3.10.

Theorem 4.19. For any k-phase φ on C, there exist exactly |k∗
/(k∗)2| enrich-

ments at the vertices of ∆ compatible with φ.
Reciprocally, given any enrichment α at the vertices of ∆, there exists a unique
k-phase φ on C such that φ is compatible with α.

Proof. This proof works just like the one in [Ren17] for lemma 1 (Lemma 3.10
in this text). Let φ be a k-phase on C. Choose an arbitrary vertex v of ∆ and
put an arbitrary element β ∈ k∗

/(k∗)2 at v. Given a vertex of ∆ equipped with
an element of k∗

/(k∗)2, define an element of k∗
/(k∗)2 at all adjacent vertices by

12
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[−t]

[1]
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[−s] [−1] [t]
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[1]

[t]
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[−st]

[s] [s] [−t]
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[t]

[−t]

[−st][−1]

[st]

[s]

[−s]
[st]

[−s]

[1]

[−st]

Figure 5: The dual of a more complex tropical curve in R2 enriched over k =
R((s, t)) referenced in Example 4.13.

using the compatibility condition in Definition 4.18. This gives an enrichment
α at the vertices of ∆ compatible with φ such that αv = β. By the definition
of k-phase, we know that going over any cycle of length 3 in ∆ does not cause
a problem. This means exactly that going over any cycle in ∆, we arrive at the
same element of k∗

/(k∗)2, and the enrichment α is well defined.
Reciprocally, let α be an enrichment of ∆. For v, w vertices of ∆, define φ(vw) =
αvαw.
We get φ(vw)φ(wu)φ(uv) = (αvαw)(αwαu)(αuαv) = (αv)

2(αw)
2(αu)

2 = [1].

Now that we have seen that the k-phase behaves like the real phase with
respect to an enrichment, our next goal is of course to prove that the two defi-
nitions coincide for k = R.
To do this, we will need to translate the k-phase into sets of elements in
(k

∗
/(k∗)2)n by looking at the solutions of equations like [xI ] = α in (k

∗
/(k∗)2)n.

As we will need the theory later anyway, we will actually discuss whole systems
of equations.

4.3 Systems of equations in (k∗/(k∗)2)n

The next few lemmas are quite technical. We are going to set up some theory
about systems of equations in (k

∗
/(k∗)2)n. It works similarly to systems of linear

equations.
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Remark 4.20. Let us fix some useful notation. Let x = (x1, ..., xn), y =
(y1, ..., yn) ∈ (k

∗
/(k∗)2)n, I = (i1, ..., in), v = (v1, ..., vn) ∈ Zn or Zn

2 and α ∈
k∗
/(k∗)2. We define

� xy = x · y = (x1y1, ..., xnyn),

� xI = xi11 · · ·xinn ,

� and αI = (αi1 , ..., αin).

With this notation we get

� (αv)I = (αv1 , ..., αvn)I = αv1i1 · · ·αvnin = α⟨v,I⟩,

� (xv)I = xv·I with componentwise multiplication,

� αv · αI = αv+I , and xv · xI = xv+I .

For |k∗
/(k∗)2| =∞, we define |k∗

/(k∗)2|m =∞ for any m ∈ N and |k∗
/(k∗)2|0 = 1.

To write down certain subsets of (k
∗
/(k∗)2)n more efficiently, we will write ◦ for

a slot in a tuple that can be filled with any element.
So for example, if k∗

/(k∗)2 = {[1], [−1]} we mean by {(◦, [1])} the set

{([1], [1]), ([−1], [1])}

and {(◦, ◦, [1])} is the set of all elements in (k
∗
/(k∗)2)3 with third entry [1]. By

writing something like {([±1], [∓1])} we mean the set {([1], [−1]), ([−1], [1])}.
Moreover, we will sometimes leave out the brackets around the entries of ele-
ments of (k

∗
/(k∗)2)n for reading convenience.

All of this will allow us to shorten formulas, computations and formulations
vastly.

Next, we give a definition to something that can be understood as the
(k

∗
/(k∗)2)n-analog of a vector subspace in Zn

2 .

Definition 4.21. Let 1 ≤ m ∈ N, m ≤ n ∈ N, V ⊂ Zn
2 an m-dimensional

vector subspace. We define

AV :=



α
v1,1
1 · · ·αvs,1

s

...

α
v1,n
1 · · ·αvs,n

s

 = αv1
1 · · ·αvs

s

∣∣∣∣∣∣∣
s ∈ N,
αi ∈ k∗

/(k∗)2 ∀i = 1, ..., s,

v1, ..., vs ∈ V

 .

Lemma 4.22. For k∗
/(k∗)2 finite holds |AV | = |k∗

/(k∗)2|m.

Proof. Via induction over dimV = m. Let m = 1. Then V = {0, w} for some
w ∈ Zn

2\{0}. We get for k∗
/(k∗)2 = {[1], α1, ..., αp−1}

AV = {αv1
1 · · ·αvs

s |s ∈ N, αi ∈ k∗
/(k∗)2 ∀i = 1, ..., s; v1, ..., vs ∈ V }

=
{
αv1
1 · · ·α

vp−1

p−1 | v1, ..., vp−1 ∈ V = {0, w}
}

= {αw | α ∈ k∗
/(k∗)2}

and hence |AV | = |k∗
/(k∗)2|.

Let now V = span{v1, ..., vm+1} be an (m + 1)-dimensional vector subspace
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and define U = span{v1, ..., vm} and W = span{vm+1}. Then dimU = m and
dimW = 1. Since V = U ⊕W is a direct sum, the map ψ : AU × AW → AV

defined via (
αu1
1 · · ·α

up−1

p−1 , α
w1
1 · · ·α

wp−1

p−1

)
7→ αu1+w1

1 · · ·αup−1+wp−1

p−1

is a well-defined bijection. By the induction assumption, we get |AV | = |AU ×
AW | = |AU | · |AW | = |k∗

/(k∗)2|m · |k∗
/(k∗)2| = |k∗

/(k∗)2|m+1.

Remark 4.23. For k = R and y ∈ (k
∗
/(k∗)2)n, the set yAspan{I−J}⊥ is exactly

the set we get if we alter y in all possible ways given by the first property in
Definition 3.3 of real phase (with I − J the corresponding vector to the facet).
By Lemma 4.22, we get that this is actually the whole assigned set.

Lemma 4.24. Let w1, ..., wm ∈ Zn
2 , V := span{w1, ..., wm}, α1, ..., αm ∈

k∗
/(k∗)2. If y ∈ (k

∗
/(k∗)2)n solves 

α1 = xw1

...

αm = xwm

,

then so does every element of yAV ⊥ .

Proof. For j ∈ {1, ...,m}, β1, ..., βs ∈ k∗
/(k∗)2, v1, ..., vs ∈ V ⊥ we get:

(βv1
1 · · ·βvs

s y)
wj = (βv1

1 · · ·βvs
s )wjywj

= β
⟨v1,wj⟩
1 · · ·β⟨vs,wj⟩

s ywj = β0
1 · · ·β0

sy
wj = ywj = αj .

Lemma 4.25. Let w1, ..., wm ∈ Zn
2 , V := span{w1, ..., wm}, p = dimV ,

α1, ..., αm ∈ k∗
/(k∗)2. Moreover, let w1, ..., wp be a basis of V and wl = λl,1w1 +

...+ λl,pwp. The system of equations
α1 = xw1

...

αm = xwm

, (3)

has a solution if, and only if, αl = α
λl,1

1 · · ·αλl,p
p for all l = p+ 1, ...,m.

If y is a solution, then the set of solutions is yAV ⊥ . In particular, there are
either |k∗

/(k∗)2|n−p solutions or 0.

Proof. The first statement follows from the equation

αl = xwl = xλl,1w1+...+λl,pwp = xλl,1w1 · · ·xλl,pwp = α
λl,1

1 · · ·αλl,p
p .

By transforming the equations like αj = xwj ⇔ αjαl = xwj+wl , we can w.l.o.g.
assume that the matrix with rows w1, ..., wp is in reduced row form. From this
we see that there are exactly n− p free parameters and we get that there exist
|k∗
/(k∗)2|n−p solutions to the first p equations if k∗

/(k∗)2 is finite. Hence, if there
is a solution to all equations, there are |k∗

/(k∗)2|n−p for k∗
/(k∗)2 finite.
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By Lemma 4.24 follows that the set of solutions of (3) is a super set of yAV ⊥ .
For k∗

/(k∗)2 finite, equality follows from the equality of the cardinalities (Lemma
4.22).
Let now (z1, ..., zn) be a solution to (3). In particular, it solves this system of
equations too, if we consider it in the finite subgroup G of k∗

/(k∗)2 generated by
{z1, ..., zn, α1, ..., αm}. As we have already proven the finite case, it follows that
z is an element of AV ⊥ ∩G ⊆ AV ⊥ .

Remark 4.26. Consider the map

η : ((k
∗
/(k∗)2)n, ·)→ ((k

∗
/(k∗)2)m, ·) ;x 7→ (xw1 , ..., xwm)

with w1, ..., wm ∈ Zn
2 as before. This is obviously a group homomorphism. What

we have proven in Lemma 4.25 is that ker η = Aspan{w1,...,wm}⊥ and that the
sets of solutions of such systems of equations are cosets of ker η in (k

∗
/(k∗)2)n.

More precisely, we have that

{solutions to (3)} = η−1(α1, ..., αm) = y ker η for any y ∈ η−1(α1, ..., αm).

Hence, similarly to systems of linear equations, we see that the solutions of such
systems of equations form some kind of “affine subspace” in (k

∗
/(k∗)2)n.

The next three lemmas are all direct consequences of Lemma 4.25. Out-
sourcing them is mainly for convenience in some following proofs.

Lemma 4.27. Let I ∈ Zn
2 , α ∈ k∗

/(k∗)2. An equation of the form

α = xI = xi11 · ... · xinn

in k∗
/(k∗)2 has |k∗

/(k∗)2|n−1 solutions if I ̸= 0. If I = 0 it has 0 solutions for
α ̸= [1] and |k∗

/(k∗)2|n for α = [1].
If ij = 1, then y ∈ (k

∗
/(k∗)2)n defined via yj = α, yl = [1] for l ̸= j is a solution

and the set of solutions equals yAI⊥ for I⊥ := {v ∈ Zn
2 | ⟨v, I⟩ = 0}.

The following lemma will be important when we talk about intersections,
too. It solves the problem of a system of two equations.

Lemma 4.28. Let α, β ∈ k∗
/(k∗)2, n ≥ 2, I, J ∈ Zn

2 . Consider the system of
equations {

α = xI = xi11 · ... · xinn
β = xJ = xj11 · ... · xjnn

. (4)

The set of solutions has

� |k∗
/(k∗)2|n−2 elements if, and only if, I ̸= J with I, J ̸= 0.

� |k∗
/(k∗)2|n−1 elements if, and only if,

i) I = J ̸= 0 and α = β or

ii) 0 = I ̸= J and α = [1] or 0 = J ̸= I and β = [1]

� 0 elements if, and only if,

i) I = J ̸= 0 and α ̸= β or

16



ii) I = J = 0 and α ̸= [1] or β ̸= [1] or

iii) 0 = I ̸= J and α ̸= [1] or 0 = J ̸= I and β ̸= [1]

� |k∗
/(k∗)2|n elements if, and only if, I = J = 0 and α = β = [1].

The next lemma deals with systems of three equations.

Lemma 4.29. Let I, J, L ∈ Zn
2\{0} be pairwise different such that I+J+L = 0,

α, β, γ ∈ k∗
/(k∗)2. Then the system of equations

−α = xI

−β = xJ

−γ = xL

(5)

has no solution if, and only if, αβγ ̸= [−1].
In particular, it has no solution for αβγ = [1] if [1] ̸= [−1] in k∗

/(k∗)2.

4.4 Equivalence of R-phase and real phase

We want to recall what we did in Example 4.11 and get sets of elements in
(k

∗
/(k∗)2)n from a k-phase. Let φ be a k-phase on C, F ∈ F(C) with cor-

responding vector I − J ∈ Zn and φ(F ) = α. Then, we get the equation
[xI ] = [−a][xJ ] in k∗

/(k∗)2, or equivalently

−α = [xI−J ] = [x(I−J) mod 2].

By Lemma 4.27, this equation has always exactly |k∗
/(k∗)2|n−1 or 0 solutions.

For C non-singular, the case of 0 solutions is not possible, as the next lemma
implies.

Lemma 4.30. Let C be a non-singular tropical hypersurface in Rn and F ∈
F(C). Then for the corresponding vector I − J it is I − J mod 2 ̸= 0.

Proof. As the dual subdivision of a non-singular tropical hypersurface only con-
sists of unimodular simplices, they also only have unimodular faces, in particular
unimodular edges. Assume I − J mod 2 = 0. Then the edge in the dual corre-
sponding to F is not unimodular, a contradiction.

In conclusion, we can interpret a k-phase φ : F(C)→ k∗
/(k∗)2 as a map into

the subsets of (k
∗
/(k∗)2)n with |k∗

/(k∗)2|n−1 elements. We will write φF for the
set corresponding to φ(F ).

Remark 4.31. Recall Definition 4.18 of compatible enrichments and Definition
3.9 of compatible distributions of signs. As (+, ...,+)=̂([1], ..., [1]) is a solution
of xI−J = −φ(F ), I − J ̸= 0 mod 2, if, and only if, φ(F ) = [−1], we get that
they coincide for k = R.

Now we can prove that R-phase and real phase are equivalent.

Theorem 4.32. Let C be a non-singular tropical hypersurface in Rn. To each
real phase ϕ on C there exists a unique corresponding R-phase φ and to each
R-phase φ on C there exists a unique corresponding real phase ϕ.
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Consequentially, we will use real phase and R-phase as synonyms from now
on.

Proof. Let C have a R-phase φ : F(C) → k∗
/(k∗)2. Let F ∈ F(C) with corre-

sponding vector I − J . Define ϕF = {ϕF,i =
(
ϕ1F,i, ..., ϕ

n
F,i

)
| 1 ≤ i ≤ 2n−1} to

be the solutions to the equation

−φ(F ) = xI−J . (6)

This is well-defined by Lemma 4.27.
First property: Let v be an integer vector in the direction of F . Then v is
orthogonal to I − J , i.e. v1(i1 − j1) + ... + vn(in − jn) = 0. If now ϕF,i =(
ϕ1F,i, ..., ϕ

n
F,i

)
solves (6), we get for ϕF,j defined via ϕkF,j = [−1]vkφk

F,i, 1 ≤ k ≤ n
that

(ϕF,j)
I−J = (ϕ1F,j)

i1−j1 · · · (ϕnF,j)
in−jn

= [−1]v1(i1−j1)(ϕ1F,i)
i1−j1 · · · [−1]vn(in−jn)(ϕnF,i)

in−jn

= [−1]v1(i1−j1)+...+vn(in−jn)(ϕF,i)
I−J

= [−1]0(ϕF,i)
I−J = −φ(F )

as desired.
Second Property: Let H be a codimension 1 face of C with adjacent facets
F1, F2, F3 corresponding to I − J, J − L,L − I ∈ Zn and αj = φ(Fj). By
Lemma 4.29, we know that there is no n-tuple that is an element of ϕF1

, ϕF2

and ϕF3 . Hence, we get the uniqueness. It remains to show: If y solves −α1 =
xI−J but not −α3 = xL−I , then y solves −α2 = xJ−L. As −α3 ̸= yL−I and
|R∗
/(R∗)2| = |{[1], [−1]}| = 2, we have α3 = yL−I . Hence, we get yJ−L = yL−J =

yL−I · yI−J = α3 · (−α1) = −α2, since α1α2α3 = [1].
Let C have a real phase ϕ. Define φ(F ) = [−1] if ([1], ..., [1]) ∈ ϕF and

φ(F ) = [1] if ([1], ..., [1]) ̸∈ ϕF . LetH be a codimension 1 face of C with adjacent
facets F1, F2, F3. By the second property, we know that ([1], ..., [1]) is either an
element of two or none of ϕF1 , ϕF2 , ϕF3 . Hence, we get φF,1φF,2φF,3 = [1] and
are done.

4.5 Alternative Definition for k-phase

In this subsection, we will give an alternative definition of a k-phase on a non-
singular tropical hypersurface that is more analogous to the real phase definition.
However, as we will see later, the firstly given notation and definition for k-phase
will be easier to generalize further.
The reason why we will give this alternative definition anyway, is that it helps
to understand the connection of k-phase and real phase better, in particular
how the two properties from the real phase definition come out of the one from
the k-phase. Since this is our only goal in this subsection, we will restrict, for
this subsection only, to fields for which k∗

/(k∗)2 is finite.

Definition 4.33 (k-phase). Let p = |k∗
/(k∗)2| < ∞. A k-phase on a non-

singular tropical hypersurface in Rn is the data for every facet F ∈ F(C) of
pn−1 n-tuples of k∗

/(k∗)2-elements φF,i =
(
φ1
F,i, ..., φ

n
F,i

)
, 1 ≤ i ≤ |k∗

/(k∗)2|n−1

satisfying the following properties:

18



1. If 1 ≤ i ≤ pn−1 and v = (v1, ..., vn) is an integer vector in the direction of F ,
then there exists 1 ≤ j ≤ pn−1 such that αvkφk

F,i = φk
F,j , for 1 ≤ k ≤ n and

α ∈ k∗
/(k∗)2.

2. Let H be a codimension 1 face of C with adjacent facets F1, F2, F3 corre-
sponding to I−J, J−L,L−I ∈ Zn

2 . Then (φF1,1)
I−J(φF2,1)

J−L(φF3,1)
L−I =

[−1].

Define φF = {φF,i =
(
φ1
F,i, ..., φ

n
F,i

)
| 1 ≤ i ≤ |k∗

/(k∗)2|n−1}.

Remark 4.34. From Lemma 4.22 we deduce that for a k-phase as defined in
4.33 the first property and one element of (k

∗
/(k∗)2)n completely define the set

φF .

Proof. Let H ⊆ Zn
2 be the by Lemma 4.30 (n− 1)-dimensional vector subspace

defined by taking the componentwise modulo 2 of the integer vectors in the
directions of F and φF,1 ∈ φF . By property 1 AH ·φF,1 ⊆ φF . Equality follows
by comparing the cardinality of the sets.

Example 4.35. In Figure 6 we see a three-dimensional example of a tropical
hypersurface with enrichment α over k = R((s, t)) and both versions of the same
k-phase φ.

Remark 4.36. This definition is written as much in the style of Definition
3.3 of real phase as possible. With the notation we have established, we can
equivalently write:
A k-phase structure on a non-singular tropical hypersurface C in Rn is the data
for every facet F ∈ F with corresponding vector I − J of a set yFA(I−J)⊥ ⊆
(k

∗
/(k∗)2)n such that for H a codimension 1 face of C with adjacent facets

F1, F2, F3 corresponding to I−J, J−L,L−I ∈ Zn
2 holds yI−J

F1
yJ−L
F2

yL−I
F3

= [−1].
For this definition, k∗

/(k∗)2 finite is not needed.

The following lemma is needed to prove that for three adjacent facets the
associated sets have empty intersection.

Lemma 4.37. Let C be a non-singular tropical hypersurface in Rn and H
be a codimension 1 face of C with adjacent facets F1, F2, F3 corresponding to
I − J, J − L,L − I ∈ Zn. Then (I − J) mod 2, (J − L) mod 2 and (L − I)
mod 2 are pairwise different.

Proof. Equip C with the real phase φ(F ) = [1] for all facets F . If w.l.o.g. (I−J)
mod 2 = (J − L) mod 2, the defining equations [−1] = xI−J and [−1] = xJ−L

would coincide, a contradiction.

Next, we want to outsource a simple observation about the second property
in the definition of real phase. We state two more equivalent versions of it.

Lemma 4.38. Let A1, A2, A3 be finite sets of the same cardinality m. Then
the following three properties are equivalent:

� ∀i ∈ {1, 2, 3} : ∀a ∈ Ai ∃!j ∈ {1, 2, 3}\{i} : a ∈ Aj

� A1 = (A1 ∩ A2)
.
∪ (A1 ∩ A3), A2 = (A1 ∩ A2)

.
∪ (A2 ∩ A3) and A3 =

(A1 ∩A3)
.
∪ (A2 ∩A3)
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φ(F1) = [−1]

φ(F2) = [t]

φ(F3) = [−t]

φ(F4) = [st]

φ(F5) = [−s]

φ(F6) = [s]

α(0,0,0) = [st]

α(1,0,0) = [1]

α(0,1,0) = [−t]

α(0,0,1) = [t]

� φF1
= {(◦,±1,±1), (◦,±t,±t), (◦,±s,±s), (◦,±st,±st)}
= {(x, y, z) ∈ (R((st))

∗
/(R((st))∗)2)3 | [1] = yz}

� φF2
= {(±1, ◦,∓t), (±t, ◦,∓1), (±s, ◦,∓st), (±st, ◦,∓s)}
= {(x, y, z) ∈ (R((st))

∗
/(R((st))∗)2)3 | [−t] = xz}

� φF3 = {(±1,±t, ◦), (±t,±1, ◦), (±s,±st, ◦), (±st,±s, ◦)}
= {(x, y, z) ∈ (R((st))

∗
/(R((st))∗)2)3 | [t] = xy}

� φF4
= {(−st, ◦, ◦)}
= {(x, y, z) ∈ (R((st))

∗
/(R((st))∗)2)3 | [−st] = x}

� φF5 = {(◦, s, ◦)}
= {(x, y, z) ∈ (R((st))

∗
/(R((st))∗)2)3 | [s] = y}

� φF6
= {(◦, ◦,−s)}
= {(x, y, z) ∈ (R((st))

∗
/(R((st))∗)2)3 | [−s] = z}

Figure 6: The over k = R((s, t)) enriched tropical hyperplane in R3 with com-
patible k-phase from Example 4.35.

20



� A1 ∩A2 ∩A3 = ∅ and |A1 ∩A2| = |A1 ∩A3| = |A2 ∩A3| = m
2 ∈ N.

Proof. The equivalence of the first two statements is obvious.
Second to third: A1∩A2∩A3 = ∅ must be true because the unions are disjoint.
The three equations of sets give a system of linear equations for |Ai ∩Aj |, i ̸= j
with unique solution |Ai ∩Aj | = m

2 , ∀i ̸= j.

Third to second: Obviously, A1 ⊃ (A1 ∩ A2)
.
∪ (A1 ∩ A3), where the union is

disjoint because A1∩A2∩A3 = ∅. Equality follows from |A1∩A2| = |A1∩A3| =
m
2 . Analogously for A2, A3.

With this preparation, we can outline how one gets from Definition 4.33 to
Definition 3.3 of real phase.

Remark 4.39. Let φ be a k-phase on a non-singular tropical hypersurface.
By Lemma 4.37 we know that all occurring exponents I − J mod 2, J − L
mod 2, L− I mod 2 for I−J, J −L,L− I corresponding vectors to three facets
F1, F2, F3 adjacent to the same codimension 1 face, are pairwise different.
Applying Lemma 4.29, we get that φF1 ∩φF2 ∩φF3 = ∅ if, and only if, [−1] ̸= [1]
in k∗

/(k∗)2.
Lemma 4.28 tells us that |φFi

∩ φFj
| = |k∗

/(k∗)2|n−2 for all i ̸= j. Hence, via
Lemma 4.38, we get that this implies property 2 from Definition 3.3 of real
phase only for |k∗

/(k∗)2| = |{[1], [−1]}| = 2.
If |k∗

/(k∗)2| > 2 or [1] = [−1], we get that φF1 ⊋ (φF1 ∩ φF2) ∪ (φF1 ∩ φF3), as
the cardinalities do not add up.
To sum it up: The first property of the k-phase as defined in 4.33 comes from the
way the equations in k∗

/(k∗)2 and k∗
/(k∗)2 itself are structured. The cardinality of

the sets comes from that and the fact that the tropical hypersurface is considered
to be non-singular.
The uniqueness in the second property of real phase comes from all of that and
the fact that [1] ̸= [−1] in R∗

/(R∗)2, the existence stems from all of that and
|R∗
/(R∗)2| = 2.

Example 4.40. Let k = Z5. Then k∗
/(k∗)2 has two elements, namely [1] = {1, 4}

and [2] = {2, 3}, in particular [1] = [−1]. Consider the tropical line in R2 with
k-phase assigning to each facet the element [1] (Figure 7). Then

� φF1
= {(x, y) ∈ (k

∗
/(k∗)2)2 | y = [1]} = {([1], [1]), ([2], [1])},

� φF2
= {(x, y) ∈ (k

∗
/(k∗)2)2 | xy = [1]} = {([1], [1]), ([2], [2])}, and

� φF3
= {(x, y) ∈ (k

∗
/(k∗)2)2 | x = [1]} = {([1], [1]), ([1], [2])}.

This demonstrates that for [1] = [−1] in k∗
/(k∗)2 it is φF1 ∩ φF2 ∩ φF3 ̸= ∅.

Moreover, we have

φF1 = {([1], [1]), ([2], [1])} ⊋ {([1], [1])} = (φF1 ∩ φF2) ∪ (φF1 ∩ φF3).

Example 4.41. For the curve with R((t))-phase we see in Figure 8 it is

φF1
= {(◦, [−t])} ⊋ {([t], [−t])}

.
∪ {([−t], [−t])} = (φF1

∩ φF2
)

.
∪ (φF1

∩ φF3
),

as |R((t))∗/(R((t))∗)2| = 4 > 2.
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φ(F1) = [1]

φ(F2) = [1]

φ(F3) = [1]

Figure 7: Example 4.40’s tropical line in R2 enriched over k = Z5 such that
φF1 ∩ φF2 ∩ φF3 ̸= ∅.

φ(F1) = [t],

resp. φF1
= {(◦, [−t])}

φ(F2) = [−t], resp. φF2
= {([t], ◦)}

φ(F3) = [−1], resp. φF3
= {([±1], [±1]), ([±t], [±t])}

Figure 8: The in Example 4.41 referenced example for a tropical line in R2 with
a k-phase for k = R((t)).

Now that we have given two different definitions of k-phase, we of course
have to prove that they are equivalent.

Theorem 4.42. Let C be a non-singular tropical hypersurface in Rn. Let F ∈
F(C) with corresponding vector I − J and |k∗

/(k∗)2| = p.
If φ : F(C) → k∗

/(k∗)2 is a k-phase as defined in 4.14, then the sets φF :=
{x ∈ (k

∗
/(k∗)2)n | −φ(F ) = xI−J , I − J the corresponding vector to F} satisfy

Definition 4.33.
If {φF = {φF,1, ..., φF,pn−1} | F ∈ F(C)} is a k-phase as defined in 4.33,

then φ : F(C) → k∗
/(k∗)2;F 7→ −(φF,1)

I−J is well defined and a k-phase as
defined in 4.14, I − J again is the corresponding vector to F .

Proof. Let φ : F(C)→ k∗
/(k∗)2 be a k-phase as defined in 4.14.

By Lemma 4.27 it is |φF | = |k∗
/(k∗)2|n−1 = pn−1.

Proof of first property: Let v be an integer vector in the direction of the facet
F and I −J be the facet’s corresponding vector. Then v is orthogonal to I −J ,
i.e. ⟨I−J, v⟩ = 0. If now

(
φ1
F,i, ..., φ

n
F,i

)
solves −φ(F ) = xI−J , we have for φF,j
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defined via φF,j = αvφF,i that

(φF,j)
I−J = (αvφF,i)

I−J = (αv)I−J(φF,i)
I−J

= α⟨v,I−J⟩(φF,i)
I−J = (φF,i)

I−J = −φ(F ).

as desired.
Proof of second property: Let F1, F2, F3 be three different facets of C adjacent to
the same codimension 1 face, corresponding to the exponents I−J, J−L,L−I.
We compute (φF1,1)

I−J(φF2,1)
J−L(φF3,1)

L−I = (−φ(F1))(−φ(F2))(−φ(F3)) =
[−1].

Let {φF | F facet of C} be a k-phase as defined in 4.33 and k∗
/(k∗)2 =

{[1], α1, ..., αp−1}. Let F ∈ F(C) be a facet of C and I−J be the corresponding
vector. Define φ : F(C) → k∗

/(k∗)2;F 7→ −(φF,1)
I−J . This is well defined, i.e.

does not depend on the choice of φF,1 as by Remark 4.34 any other φF,j ∈ φF

is of the form
φF,j = αv1

1 · · ·α
vp−1

p−1 φF,1

for some integer vectors v1, ..., vp−1 in the direction of F and hence

(φF,j)
I−J =

(
αv1
1 · · ·α

vp−1

p−1 φF,1

)I−J
= (αv1

1 )I−J · · · (αvp−1

p−1 )I−JφI−J
F,1

= (αv1
1 )I−J · · · (αvp−1

p−1 )I−JφI−J
F,1 = α

⟨v1,I−J⟩
1 · · ·α⟨vp−1,I−J⟩

p−1 φI−J
F,1

= α0
1 · · ·α0

p−1φ
I−J
F,1

= φI−J
F,1 .

Finally, we see that

φ(F1)φ(F2)φ(F3) = (−(φF1,1)
I−J)(−(φF2,1)

J−L)(−(φF3,1)
L−I) = [1].

4.6 k-phase for singular hypersurfaces

Recall Definition 4.14:

Definition. A k-phase on a non-singular tropical hypersurface C in Rn is a map
φ : F(C) → k∗

/(k∗)2 such that for each codimension 1 face of C with adjacent
facets F1, F2, F3 holds φ(F1)φ(F2)φ(F3) = [1].

If we look closely, we notice that for this definition we only needed the
property of C to be non-singular to have exactly three adjacent facets to a
codimension 1 facet. If we alter the definition a little bit, we don’t actually
need this property.

Definition 4.43 (k-phase). A k-phase on a tropical hypersurface C in Rn is
a map φ : F(C) → k∗

/(k∗)2 such that for each codimension 1 face of C with
adjacent facets F1, ..., Fp holds φ(F1) · · ·φ(Fp) = [1].

Remark 4.44. It might be worth noticing that, given a tropical hypersurface C
in Rn, the set of k-phase structures on C is a group via point-wise multiplication.
That is, if we have two k-phases φ,ψ : F(C) → k∗

/(k∗)2 we can define their
product φ · ψ : F(C) → k∗

/(k∗)2 via φ · ψ(F ) := φ(F )ψ(F ). As one can easily
check, this is again a k-phase.
This group is obviously abelian and has exponent 2.
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Obviously, this definition coincides with the one for non-singular hypersur-
faces for such. With the same procedure as in Theorem 4.19, we get such a
k-phase φ from an enrichment α: Define φ(vw) = αvαw for v, w vertices of the
dual subdivision ∆.
Then, for F1, ..., Fp adjacent to the same codimension 1 face, every αv occurs
twice in the product φ(F1) · · ·φ(Fp) and hence the product is [1].
However, the sets of solutions for the equations [xI−J ] = −φF may behave rather
strange, as, for example, they can happen to be empty: If for a F ∈ F(C) the
corresponding vector is I − J = 0 mod 2 and φ(F ) ̸= [1]. Or, in the other
extreme, if I − J = 0 mod 2 and φ(F ) = [1], the set is whole (k

∗
/(k∗)2)n.

Here we notice an advantage of our way to define a k-phase not as sets, if the
set is not of the wanted form, we do not run into a problem.
Of course, the same question arises as when we firstly defined the k-phase for
non-singular hypersurfaces: Do we get a |k∗

/(k∗)2| to 1 correspondence for this
case, too? We will proceed with proving that the answer to this question is yes.
To do so, we need the following fact and notation: For a subdivision ∆ dual
to a tropical hypersurface we denote by ∆V the set of vertices and by ∆E

the set of edges. For such a ∆ there always exists a non-singular subdivision
∆′ = (∆′

V ,∆
′
E) such that ∆V ⊆ ∆′

V and ∆E ⊆ ∆′
E .

Lemma 4.45. Let φ be a k-phase on a subdivision ∆ dual to a tropical hyper-
surface. Let ∆′ = (∆′

V ,∆
′
E) be a non-singular subdivision such that ∆V ⊆ ∆′

V

and ∆E ⊆ ∆′
E.

Then there exists a k-phase φ′ on ∆′ such that φ′(e) = φ(e) for all edges e of
∆.

See Figure 9 for an example of how this proof works. There, the edges and
the vertex of ∆′ which do not have an associated element of k∗

/(k∗)2 yet, are
marked red.

Proof. For C a cycle using the edges e1, ..., en we call
∏n

l=1 φ(el) the product
value of C.
If ∆′ = ∆ there is nothing to prove. So let ∆′ ̸= ∆. Let i = |∆′

V \∆V | be the
number of vertices and j = |∆′

E\∆E | be the number of edges added to ∆.
We use induction over i. For the base case, let i = 0. We use induction over
j. So let now j = 1. In this case, there exist vertices v1, v2, v3 of ∆ such that
v1v2, v1v3 ∈ ∆E and v2v3 ∈ ∆′

E\∆E . Define φ′(v2v3) = φ(v1v2)φ(v1v3) (step
(7) in Figure 9). Then φ′(v2v3)φ(v1v2)φ(v1v3) = [1]. Every other cycle using
the edge v2v3 has the same product value as if it would use v1v2 and v1v3 in-
stead, hence the claim follows by definition of k-phase. For the inductive step,
let j > 1. Again, we find vertices v1, v2, v3 of ∆ such that v1v2, v1v3 ∈ ∆E

and v2v3 ∈ ∆′
E\∆E and define φ′(v2v3) = φ(v1v2)φ(v1v3) (step (4) − (6) in

Figure 9). By the same argument as in the base case, we get that this gives us
a well-defined k-phase on (∆V ,∆E ∪ {v2v3}). The claim follows by induction,
so the base case i = 0 is completed.
Let now i > 1. Then there exist two vertices v1 and v2 of ∆ such that
they have an adjacent vertex v3 ∈ ∆′

V \∆V and v1v3, v2, v3 ∈ ∆′
E\∆E . Set

φ′(v1v3) = φ(v1v2) and φ(v2v3) = [1] (step (2) and (3) in Figure 9). We get that
φ′(v1v3)φ(v1v2)φ(v2v3) = [1]. Every cycle in (∆V ∪ {v3},∆E ∪ {v1v3, v2v3})
using the vertex v3 has to use the edges v1v3 and v2v3. Hence, its product value
is the same as if it would use the edge v1v2 instead. It follows that we got a
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well-defined k-phase on (∆V ∪ {v3},∆E ∪ {v1v3, v2v3}). By induction, we are
done.

Theorem 4.46. For any k-phase φ on C, there exist exactly |k∗
/(k∗)2| enrich-

ments at the vertices of ∆ compatible with φ.
Reciprocally, given any enrichment α at the vertices of ∆, there exists a unique
k-phase φ on C such that φ is compatible with α.

Proof. Let φ be a k-phase on C. Let ∆′ and φ′ be as in Lemma 4.45. From
Theorem 4.19 we know that there exist exactly |k∗

/(k∗)2| enrichments at the
vertices of ∆′ compatible with φ′. As ∆ is connected, we see that these are
exactly the compatible enrichments for φ on ∆, too.
Reciprocally, let α be an enrichment of ∆. For v, w vertices of ∆, define φ(vw) =
αvαw.
For a cycle with vertices v1, v2, ..., vn, v1 we get

φ(v1v2) · · ·φ(vn−1vn)φ(vnv1)

= (αv1αv2) · · · (αvn−1αvn)(αvnαv1)

= (αv1)
2 · · · (αvn)

2 = [1].

4.6.1 Equivalence of R-phase and real phase as in [RRS22]

In [RRS22], a different formulation of real phase structure is introduced:

Definition 4.47. Let Σ be a rational polyhedral fan of pure dimension d in
Rn. A real phase structure E on Σ is a map

E : Facets(Σ)→ {V ⊆ Zd
2 | V an affine subspace of dimension d}

such that

(i) for every facet σ of Σ, the set E(σ) is an affine subspace of Zn
2 parallel to

σ, in formulas, T (E(σ)) = TZ2
(σ)

(ii) for every codimension one face τ of Σ with facets σ1, ..., σk adjacent to it,
the sets E(σ1), ..., E(σk) are an even covering.

where

Definition 4.48. A collection of subsets of a set such that every element in the
union is contained in an even number of the subsets is called an even covering.

As we have already discussed earlier, we rather interpret Z2 as R∗
/(R∗)2 and

the affine subspaces as cosets of subgroups as defined in 4.21.
Notice that the definition of real phase given above is more general than our
definition of R-phase in the sense that the fan does not have to have codimension
one.
In the paper, this definition of real phases is mainly used on fans that arise
as the Bergman fan of a matroid. In particular, the fans are balanced for all
weights equal to one. In this case, the R-phase and real phase are the same in
the sense of 4.32, as we will prove later.
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Figure 9: A short illustration of the induction in the proof of Lemma 4.45. The
α, β, γ, δ, ϵ, ζ, η, ϑ, κ, λ, µ, ν, and ξ are elements of k∗

/(k∗)2.
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However, this definition of real phase differs from our definition of R-phase if the
fan has weights bigger than 1: As already stated earlier, the sets we associate
to facets can be empty.

Example 4.49. Consider the tropical curve V trop(0 ⊕ x ⊕ y2), see figure 10.
For the R-phase we see in the figure, the set assigned to F1 is φF1 = {(x, y) ∈
R∗
/(R∗)2 | [1] = x0y2 = [−1]} = ∅.

We can compute φF2
= {(x, y) ∈ R∗

/(R∗)2 | x1y0 = [−1]} = {(−1, 1), (−1,−1)}
and φF3

= {(x, y) ∈ R∗
/(R∗)2 | x1y2 = x1y0 = [−1]} = φF2

.

2
φ(F1) = [1]

φ(F2) = [1]

φ(F3) = [1]

Figure 10: Example 4.49’s tropical line in R2 with R-phase.

Example 4.50. In the light of definition 4.47, an idea that comes up naturally
is to require for a k-phase that the associated sets form a |k∗

/(k∗)2|-covering.
However, this does not agree with our definition of k-phase: In the example
given in 8 we see that ([1], [1]) is only contained in φF3

. Moreover, we have
already seen in example 4.40 that even if |k∗

/(k∗)2| = 2 an element can be
contained in an uneven number of the sets associated to facets.

Theorem 4.51. For a tropical fan of codimension 1 with all weights equal to
one, the even covering property as defined in 4.47 is equivalent to the property
in the definition of R-phase that

∏k
i=1 αi = [1].

Proof. Let y ∈ (R
∗
/(R∗)2)n be a solution to the equations xIi = −αi for w.l.o.g.

i = 1, ..., l. For i > l follows xIi = αi, as |R∗
/(R∗)2| = 2. Then

1 = y0 = yI1 · · · yIlyIl+1 · · · yIk = [−1]l
k∏

i=1

αi = [−1]l,

which is true if, and only if, l is even.

For fans of higher codimension however, I am not sure (yet) of how to define
k-phases. One approach is to make similar constructions as in the paper [RRS22]
for matroids over the (quotient) hyperfield k∗

/(k∗)2. This appears to work well.

5 Intersection of hypersurfaces with k-phases

After establishing k-phase for all kinds of tropical hypersurfaces, we now want
to inspect what happens if we intersect tropical hypersurfaces equipped with
k-phases transversely. We will then proceed with defining a k-phase structure
directly on intersections.
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5.1 Intersecting hypersurfaces with k-phases

Let C,C ′ be tropical hypersurfaces equipped with k-phases φ,φ′ with transver-
sal intersection. If we recall the intuition behind the k-phase, it is natural to
define

ϕ : {F ∩ F ′ | F ∈ F(C), F ′ ∈ F(C ′)} → P((k∗
/(k∗)2)n);

F ∩ F ′ 7→ ϕF∩F ′ := φF ∩ φ′
F ′

(where P((k∗
/(k∗)2)n) denotes the power set of (k

∗
/(k∗)2)n), as this set contains all

configurations of [x1], ..., [xn] ∈ k∗
/(k∗)2 that allow a zero in the preimage under

tropicalization. If we write φF = {−α = xI−J} and φ′
F ′ = {−α′ = xI

′−J′} we
see that

ϕF∩F ′ =

{
−α = xI−J

−α′ = xI
′−J′

}
.

As solutions to a system of equations in k∗
/(k∗)2 like in Lemma 4.25, the sets

ϕF∩F ′ are of the form yAV for y one solution and V = span{I − J, I ′ − J ′}⊥.
Let F ∈ F(C) and F ∈ F(C ′) with corresponding vectors I − J , respectively
I ′ − J ′. Even though the intersection is transversal, we do not get any relevant
information about relations between I − J and I ′ − J ′, as it is only relevant
what they are modulo 2. An example for I − J = I ′ − J ′ mod 2 is given in
Example 5.2. Hence, even if C and C ′ are non-singular (and hence I − J ̸= 0
mod 2 and I ′−J ′ ̸= 0 mod 2), |ϕF∩F ′ | can be either |k∗

/(k∗)2|n−2, |k∗
/(k∗)2|n−1

or 0.
The next lemma lists all possible cases for |ϕF∩F ′ | and when exactly they occur.

Lemma 5.1. Let C,C ′ be two tropical hypersurfaces with k-phases φ,φ′. Let
the intersection of C and C ′ be transversal. For F, F ′ facets of C, respectively
C ′, define

ϕ : {F ∩ F ′ | F ∈ F(C), F ′ ∈ F(C ′)} → P((k∗
/(k∗)2)n);

F ∩ F ′ 7→ ϕF∩F ′ := φF ∩ φ′
F ′ .

Then ϕF∩F ′ has, for corresponding vectors I − J and I ′ − J ′, and φ(F ) = α,
φ′(F ′) = α′,

� |k∗
/(k∗)2|n−2 elements if, and only if, I − J ̸= I ′− J ′ mod 2 with I, J ̸= 0

mod 2.

� |k∗
/(k∗)2|n−1 elements if, and only if,

i) I − J = I ′ − J ′ ̸= 0 mod 2 and α = α′ or

ii) 0 = I−J ̸= I ′−J ′ mod 2 and α = [1] or 0 = I ′−J ′ ̸= I−J mod 2
and α′ = [1]

� 0 elements if, and only if,

i) I − J = I ′ − J ′ ̸= 0 mod 2 and α ̸= α′ or

ii) I − J = I ′ − J ′ = 0 mod 2 and α ̸= [1] or α′ ̸= [1] or

iii) 0 = I−J ̸= I ′−J ′ mod 2 and α ̸= [1] or 0 = I ′−J ′ ̸= I−J mod 2
and α′ ̸= [1]
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� |k∗
/(k∗)2|n elements if, and only if, I − J = I ′ − J ′ = 0 mod 2 and α =

α′ = [1].

Proof. This follows directly from Lemma 4.28.

Example 5.2. Consider the two non-singular tropical curves C,C ′ with R-
phases φ,φ′ in Figure 11 intersecting in the facets F and F ′ with corresponding
vectors (0, 1), respectively (2,−1). We get that the blue curve has assigned
the set {([±1], [1])} and the black curve {([±1], [−1])} to the intersecting facet.
Hence, it is φF ∩ φ′

F ′ = ∅.

C

C ′

φ′(F ′) = [−1]

φ(F ) = [1]

Figure 11: The intersecting curves mentioned in Example 5.2. For simplicity,
the R-phase is only noted on the relevant edges.

Example 5.3. If we consider the same curves and R-phases as in the previous
Example 5.2 and Figure 11 but change φ′ to such that φ′(F ′) = [1], we get the
assigned sets φF = {([±1], [−1])} = φ′(F ′) and consequentially |φF ∩ φ′

F ′ | =
2 = 21 = |R∗

/(R∗)2|2−1.

Example 5.4. Consider the two curves with R((t))-phase in Figure 12. The
associated set to facet F of C is {([±1], [±1]), ([±t], [±t])}, the one associated
to the facet F ′ of C ′ is {(◦, [−t])}. Hence, they have intersection {([−t], [−t])}
and it is |φF ∩ φ′

F ′ | = 1 = 40 = |R((t))∗/(R((t))∗)2|2−2.

As the resulting sets may have different cardinalities — even in the real and
non-singular case — an approach via defining a k-phase as sets is unlikely to
work. This is why we will again choose the other approach. Before going into
detail there, we shortly discuss what can happen if we intersect more than just
two hypersurfaces.
For C1, ..., Cm tropical hypersurfaces in Rn such that the intersection D =
C1 ∩ ... ∩ Cm is transversal and k-phases φ1, ..., φm, we again simply define

ϕ : {F1 ∩ ... ∩ Fm | Fi ∈ F(Ci)} → P((k∗
/(k∗)2)n)

F1 ∩ ... ∩ Fm 7→ ϕF∩...∩Fm
:= φ1

F1
∩ ... ∩ φm

Fm
.

With Lemma 4.25 we can say precisely how ϕF∩...∩Fm
looks like.
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C ′

φ′(F ′) = [−1]

C

φ(F ) = [t]

Figure 12: The intersecting curves mentioned in Example 5.4. For simplicity,
the R((t))-phase is only marked on the relevant edges.

Lemma 5.5. For ϕ as defined above, with Il − Jl the corresponding vector to
Fl for l = 1, ...,m, let V = span{I1 − J1, ..., Im − Jm} and p = dimV . Then
either |ϕF1∩...∩Fm

| = 0 or |ϕF1∩...∩Fm
| = |k∗

/(k∗)2|n−p.
In the second case, ϕF∩...∩Fm = yAV ⊥ holds for any y ∈ ϕF∩...∩Fm .
If Ii1 − Ji1 , ..., Iip − Jip form a basis of V and Il − Jl = λl,1(Ii1 − Ji1) +
... + λl,p(Iip − Jip), then ϕF∩...∩Fm

is not empty, if, and only if, φl(Fl) =
(φi1(Fi1))

λl,1 · · · (φip(Fip))
λl,p holds for all l ∈ {1, ...,m}\{i1, ..., ip}.

Proof. This follows directly from Lemma 4.25.

5.2 k-phase for intersections

Inspired by the previous subsection and our first Definition 4.14 of a k-phase,
we define

ϕ : {F ∩ F ′ | F ∈ F(C), F ′ ∈ F(C ′)} → (k
∗
/(k∗)2)2;

F ∩ F ′ 7→ ϕ(F ∩ F ′) := (φ(F ), φ′(F ′)).
(7)

In this case, it is easier to see what happens at a codimension 1 (w.r.t. to the
dimension of C ∩ C ′) face H of C ∩ C ′. As the intersection is transversal, we
know that the facets adjacent to H are of the form F1∩F ′, ..., Fp∩F ′ for facets
F1, ..., Fp ∈ F(C) and F ′ ∈ F(C ′) (or, of course, with the roles of C and C ′

exchanged). By definition of a k-phase we know that φ(F1) · · ·φ(Fp) = [1].
More generally, let C1, ..., Cm be tropical hypersurfaces in Rn such that their
intersection D = C1 ∩ ... ∩ Cm is transversal. Then each codimension 1 (w.r.t.
the dimension of D) face H of D is of the form F1 ∩ ... ∩ Hk ∩ ... ∩ Fm with
Fi ∈ F(Ci) and Hk a codimension 1 (w.r.t. the dimension of Ck) face of Ck. In
particular, if the adjacent facets of Hk are F 1

k , ..., F
p
k ∈ F(Ck), then the adjacent

facets of H are F1 ∩ ... ∩ F 1
k ∩ ... ∩ Fm, ..., F1 ∩ ... ∩ F p

k ∩ ... ∩ Fm.
Again, we get from the definition of k-phase that φ(F 1

k ) · · ·φ(F
p
k ) = [1]. This

observation inspires the next definition. For m = 1 it is exactly the already
known definition for k-phase.
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Definition 5.6. Let C1, ..., Cm be tropical hypersurfaces in Rn such that the
intersection D = C1∩ ...∩Cm is transversal. A k-phase structure on D is a map

φ : {F1 ∩ ... ∩ Fm | Fi ∈ F(Ci)} → (k
∗
/(k∗)2)m

F1 ∩ ... ∩ Fm 7→ φ(F1 ∩ ... ∩ Fm),

such that

φ(F1 ∩ ... ∩ F 1
k ∩ ... ∩ Fm)k · · ·φ(F1 ∩ ... ∩ F p

k ∩ ... ∩ Fm)k = [1]

holds for H a facet of D with adjacent facets F1 ∩ ...∩F 1
k ∩ ...∩Fm, ..., F1 ∩ ...∩

F p
k ∩ ... ∩ Fm.

Let C1, ..., Cm be as in the definition and the intersection D be equipped
with a k-phase φ. If we want to get sets of elements of (k

∗
/(k∗)2)n out of this

definition of k-phase, we need to solve the system of equations
−φ(F1 ∩ ... ∩ Fm)1 = xI1−J1

...

−φ(F1 ∩ ... ∩ Fm)m = xIm−Jm

,

for, as usual, Fi ∈ F(Ci) with corresponding vector Ii − Ji for all i = 1, ...,m.

Remark 5.7. As the intersection of k-phases written as sets is just a set-
theoretic intersection, the intersection is the same no matter if we intersect C1

with C2 or vice-versa. If we write the intersection as in (7), changing the order
of intersecting only changes the order of the tuple.
For the same reason, intersecting with k-phases is associative, too.

Remark 5.8. Impractically, for stable intersections, k-phase does not work, as
the following two examples show. Consider the two tropical lines from Figure
13 with stable intersection point x.
Let α = [1]. Then we compute the set associated to x1 to be {([−1], [−1])} and
the one to x2 to be {([−1], [1])}. Hence, we get a different set depending on
whether we shift the blue curve to the left or to the right.
For α = [−1] we see that the approach to only note the tuple of k-phases fails,
too: For x1 we get ([1], [1]) but for x2 we get ([1], [−1]).
The third natural approach would be to just intersect all the sets associated to
facets adjacent to the stable intersection point. As we have already discussed
in Remark 4.39, this intersection will usually be empty. In particular, it will
always be empty for non-singular hypersurfaces with a real phase.

Remark 5.9. Of course, if we intersect intersections with k-phases as defined
in 5.6, we can again go through the analog process and get sets and tuples
associated to facets.

6 k-phase in the context of enriched intersection
theory

Starting with the enriched tropical hypersurfaces we already defined, in [PP22]
is an enriched intersection multiplicity introduced. In this section, we want to
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[1]

α

α[1]

[1]

[1]

→

→

x1

[1]

α

α [1]

[1]

[1]

x

[1]

α

α [1]

[1]

[1]

←

←

x2

Figure 13: The intersecting lines mentioned in Remark 5.8.

study how well this concept works with k-phase. We will try to recover state-
ments that hold for enriched hypersurfaces for our k-phase.
Before we come to the enriched intersection multiplicity, we shortly give a defi-
nition of the usual tropical intersection multiplicity.

6.1 Tropical intersection multiplicity

Let C1, ..., Cn be tropical hypersurfaces in Rn that intersect transversely at
p ∈ C1 ∩ ...∩Cn. Then this point corresponds to a parallelepiped P in the dual
subdivision of C1 ∪ ... ∪ Cn.
We define

multp(C1, ..., Cn) := volume of P.

If the intersection point lies in F1∩ ...∩Fn for Fi ∈ F(Ci) and the corresponding
vector of Fi is Ii − Ji for all i ∈ {1, ..., n}, then this means

multp(C1, ..., Cn) = |det(I1 − J1, ..., In − Jn)|.

Example 6.1. Consider the intersection of two tropical lines in Figure 14. As
the intersection multiplicity we compute

|det
(
1− 0 0− 0
0− 0 1− 0

)
| = |det

(
1 0
0 1

)
| = 1.

x0y0

x0y1

x1y0

x0y0

x0y1

x1y0

Figure 14: The intersecting lines mentioned in Example 6.1 with the dual of the
union of the lines. The intersection multiplicity is 1.

Example 6.2. Consider the intersection of two tropical curves in Figure 15.
We compute the intersection multiplicity to be

|det
(
2− 0 0− 1
0− 0 1− 0

)
| = |det

(
2 −1
0 1

)
| = 2.
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x0y0

x2y0

x0y1

x0y0 x1y0

x0y1

Figure 15: The intersecting curves referred to in Example 6.2 with the dual of
their union. The intersection multiplicity is 2.

Example 6.3. Consider the intersection in Figure 16. The intersection multi-
plicity is

|det
(
0− 0 2− 0
0− 1 0− 1

)
| = |det

(
0 2
−1 −1

)
| = 2.

x0y0 x1y0

x2y0

x0y1

x0y2

x1y1

x0y0

x0y1

x1y0

Figure 16: The intersecting curves mentioned in Example 6.3 with the dual of
their union. The intersection multiplicity is 2.

6.2 The Grothendieck-Witt ring and the trace map

As the enriched intersection multiplicity takes values in the Grothendieck-Witt
ring, we first need to introduce this structure.
This subsection is heavily based on [PP22]’s subsection 2.1. We start off with
the important definition.
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Definition 6.4 (Grothendieck-Witt ring). The Grothendieck-Witt ring GW(R)
of a ring R is the group completion of the semi-ring of isometry classes of non-
degenerate symmetric bilinear forms over R under the direct sum ⊕ and tensor
product ⊗.

For R a field with characteristic other than 2, the Grothendieck-Witt ring
has a nice presentation. In this case, any form can be diagonalized, i.e. for any
k-vector space V and symmetric bilinear form β : V ×V → k we can find a basis
for V , such that

β((x1, ..., xn), (y1, ..., yn)) = a1x1y1 + ...+ anxnyn (8)

for some a1, ..., an ∈ k∗ in this basis. If we replace one of the ai by aib
2 for

some b ∈ k∗, the resulting form is in the same isometry class as β. Hence, the
form β can be expressed as the direct sum of n symmetric bilinear forms on a
one-dimensional k-vector space. Indeed, GW(k) is generated by the classes of
bilinear forms

⟨a⟩ : k × k → k; (x, y) 7→ axy

for a ∈ k∗
/(k∗)2 subject to the following relations

1. ⟨a⟩⟨b⟩ = ⟨ab⟩ for a, b ∈ k∗

2. ⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨ab(a+ b)⟩ for a, b, a+ b ∈ k∗.

We define ⟨a1, ..., as⟩ := ⟨a1⟩ + ... + ⟨as⟩. From this follows in particular, that
we can interpret k∗

/(k∗)2 as a subset of GW(k) and that the multiplication in
GW(k) is the same as the one in k∗

/(k∗)2. This allows us to define multiplication
of elements in k∗

/(k∗)2 with elements in GW(k) via [a]⊗g := ⟨a⟩g for g ∈ GW(k)
and [a] ∈ k∗

/(k∗)2.

Definition 6.5 (Hyperbolic form). We define the hyperbolic form h to be the
form on a 2-dimensional k-vector space (or free rank 2 R-module over R when

R is not a field) with Gram matrix

(
0 1
1 0

)
.

Remark 6.6. For any a ∈ R∗ it is ⟨a⟩h = h. If R = k is a field of characteristic
not 2, it is h = ⟨1⟩+ ⟨−1⟩ = ⟨a⟩+ ⟨−a⟩.

Definition 6.7 (Rank). The rank of a symmetric bilinear form β : V ×V → R
is defined to be the rank of the R-module V .

The rank extends to a homomorphism rank: GW(R)→ Z.

Example 6.8. For k = C we have k∗
/(k∗)2 = {[1]} and hence there is only one

generator ⟨1⟩ ∈ GW(C). It follows that GW(C) ∼= Z where the isomorphism is
the rank homomorphism. In particular, results in classical enumerative geome-
try coincide with the counts enriched in GW(k) for an algebraically closed field
k by taking the rank.

Example 6.9. For k = R we have k∗
/(k∗)2 = {[1], [−1]} and hence GW(R) has

two generators ⟨1⟩ and ⟨−1⟩. An element in GW(R) is completely determined
by its rank and its signature.

Example 6.10. We have already seen that k∗
/(k∗)2 = k{{t}}∗

/(k{{t}}∗)2 and
hence GW(k) ∼= GW(k{{t}}).
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6.3 Enriched intersection multiplicity and k-phase

In [PP22], the authors give a definition of an enriched intersection multiplicity
for n enriched tropical hypersurfaces in Rn which takes values in GW(k). To
avoid even more definitions, we will define this multiplicity via a theorem from
this paper instead of the original definition. However, first we still need the
following definitions.

Definition 6.11 (Odd vertices). We call a vertex v = (v1, ..., vn) ∈ Zn in the
dual subdivision odd, if its class equals (1, ..., 1) in Zn

2 .

Let p be an intersection point of enriched tropical hypersurfaces C1, ..., Cn

and let P be the parallelepiped in the dual subdivision of C1 ∪ ... ∪ Cn dual to
p. For ∆i = Ii − J i the corresponding vectors to the facets Fi ∈ F(Ci) with
p ∈ Fi, this parallelepiped is given by P =

{∑n
i=1K

i | Ki = Ii or J i
}
.

We assign a sign to each vertex of P . If v =
∑n

i=1K
i is a vertex of P , it can

be expressed uniquely as v =
∑n

i=1 I
i− δKi,Ji∆i, where δKi,Ji is the Kronecker

delta. The sign of the vertex v with respect to the parallelepiped P is defined
as

ϵP (v) :=

(
n∏

i=1

(−1)δKi,Ji

)
sign(detD),

where D is the matrix with rows ∆1, ...,∆n.

Remark 6.12. In the case n = 2 this means the following: If v is a corner
vertex of a parallelogram P in the dual subdivision of C1 ∪ C2 dual to a point
p ∈ C1 ∩ C2, it is

ϵP (v) =

{
+1 first C1 then C2

−1 first C2 then C1

when walking around the vertex inside the parallelogram anticlockwise.

Theorem 6.13 ([PP22] Theorem 5.6.). Let p be an intersection point of en-
riched tropical hypersurfaces C1, ..., Cn that intersect tropically transversally at
p. Let P be the parallelepiped in the dual subdivision of C1∪ ...∪Cn correspond-
ing to p and let v1, ..., vq be the odd vertices of P . If the classical intersection
multiplicity multp(C1, ..., Cn) equals m, then

m̃ultp(C1, ..., Cn) =

q∑
l=1

⟨ϵP (vl)αl⟩+
m− q

2
h

where αl = Πn
i=1α

(l)
Ii is the coefficient of the odd vertex vl, for l = 1, ..., q.

Taking the rank of this enriched intersection multiplicity recovers the clas-
sical tropical intersection multiplicity.
From this theorem we get, with an easy computation, that the enriched multi-
plicity is defined up to a factor of k∗

/(k∗)2 if we fix the k-phase.

Corollary 6.14. Let p be an intersection point of enriched tropical hypersur-
faces C1, ..., Cn that intersect tropically transversally at p. Let C ′

1 be the enriched
hypersurface we get by multiplying the enrichment α of C1 with γ ∈ k∗

/(k∗)2.
Then

m̃ultp(C
′
1, ..., Cn) = γ m̃ultp(C1, ..., Cn).
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In particular, if we fix a k-phase on C1, ..., Cn, the enriched intersection multi-
plicities are defined up to a factor of k∗

/(k∗)2.

Proof. Using the notation from Theorem 6.13 we compute

m̃ultp(C
′
1, ..., Cn)

=

q∑
l=1

⟨ϵP (vl)
(
γα

(l)
I1Π

n
i=2α

(l)
Ii

)
⟩+ m− q

2
h

= γ

q∑
l=1

⟨ϵP (vl)
(
Πn

i=1α
(l)
Ii

)
⟩+ γ

m− q
2

h

= γ m̃ultp(C1, ..., Cn).

6.4 Enriched Bézout’s theorem and k-phase

In, again, [PP22], the authors prove enriched versions of Bézout’s theorem. For
the first version, we get the positive answer that it holds for tropical hypersur-
faces with k-phases, too.

Theorem 6.15 ([PP22] Corollary 6.5.). Let C1, ..., Cn be enriched tropical hy-
persurfaces in Rn with Newton polytopes ∆d1

, ...,∆dn
such that

∑n
i=1 di ≡ n+1

mod 2 and assume that C1, ..., Cn intersect transversally at every intersection
point. Then ∑

p∈C1∩...∩Cn

m̃ultp(C1, ..., Cn) =
d1 · · · dn

2
h ∈ GW(k).

Corollary 6.16. Let C1, ..., Cn be as in 6.15 and C ′
1 as in 6.14 the enriched

hypersurface we get by multiplying the enrichment α of C1 with γ ∈ k∗
/(k∗)2.

Then ∑
p∈C′

1∩...∩Cn

m̃ultp(C
′
1, ..., Cn) =

d1 · · · dn
2

h =
∑

p∈C1∩...∩Cn

m̃ultp(C1, ..., Cn).

In particular, we get this version of Bézout’s theorem for k-phases, too.

Proof. We easily compute ∑
p∈C′

1∩...∩Cn

m̃ultp(C
′
1, ..., Cn)

=
∑

p∈C1∩...∩Cn

m̃ultp(C
′
1, ..., Cn)

= γ
∑

p∈C1∩...∩Cn

m̃ultp(C1, ..., Cn)

= γ
d1 · · · dn

2
h =

d1 · · · dn
2

h
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In the second case however, the factor γ ∈ k∗
/(k∗)2 does not get “absorbed”

by a hyperbolic form.

Theorem 6.17 ([PP22] Corollary 6.8.). Let C1, ..., Cn be enriched tropical hy-
persurfaces in Rn with Newton polytopes ∆d1 , ...,∆dn such that

∑n
i=1 di ̸≡ n+1

mod 2 and assume that C1, ..., Cn intersect transversally at every intersection
point. Then∑

p∈C1∩...∩Cn

m̃ultp(C1, ..., Cn) =
d1 · · · dn − r

2
h+ ⟨a1, ..., ar⟩ ∈ GW(k)

where r has to be smaller or equal to the number of odd points on ∂∆d1+...+dn .

Corollary 6.18. Let C1, ..., Cn be as in 6.17 and C ′
1 as in 6.14 the enriched

hypersurface we get by multiplying the enrichment α of C1 with γ ∈ k∗
/(k∗)2.

Then ∑
p∈C′

1∩...∩Cn

m̃ultp(C
′
1, ..., Cn) =

d1 · · · dn − r
2

h+ ⟨γa1, ..., γar⟩

for ∑
p∈C1∩...∩Cn

m̃ultp(C1, ..., Cn) =
d1 · · · dn − r

2
h+ ⟨a1, ..., ar⟩ ∈ GW(k)

as in Theorem 6.17.

Proof. We compute∑
p∈C′

1∩...∩Cn

m̃ultp(C
′
1, ..., Cn)

=
∑

p∈C1∩...∩Cn

m̃ultp(C
′
1, ..., Cn)

= γ
∑

p∈C1∩...∩Cn

m̃ultp(C1, ..., Cn)

= γ

(
d1 · · · dn − r

2
h+ ⟨a1, ..., ar⟩

)
=
d1 · · · dn − r

2
h+ ⟨γa1, ..., γar⟩
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